
C++ Variables, Literals and
Constants
In this tutorial, we will learn about variables, literals, and constants in C++ with the help of
examples.

Content from https://www.programiz.com/cpp-programming/variables-literals.

C++ Variables
In programming, a variable is a container (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier). For
example,

Here, age is a variable of the int data type, and we have assigned an integer value 14 to it.

Note: The int data type suggests that the variable can only hold integers. Similarly, we can use
the double data type if we have to store decimals and exponentials.

We will learn about all the data types in detail in the next tutorial.

The value of a variable can be changed, hence the name variable.

Rules for naming a variable
A variable name can only have alphabets, numbers, and the underscore _ .

int age = 14;

int age = 14; // age is 14
age = 17; // age is 17

https://www.programiz.com/cpp-programming/variables-literals

A variable name cannot begin with a number.
It is a preferred practice to begin variable names with a lowercase character. For
example, name is preferable to Name.

A variable name cannot be a keyword. For example, int is a keyword that is used to
denote integers.
A variable name can start with an underscore. However, it's not considered a good
practice.

Note: We should try to give meaningful names to variables. For example, first_name is a better
variable name than fn.

C++ Literals
Literals are data used for representing fixed values. They can be used directly in the code. For
example: 1 , 2.5 , 'c' etc.

Here, 1 , 2.5 and 'c' are literals. Why? You cannot assign different values to these terms.

Here's a list of different literals in C++ programming.

Integers
An integer is a numeric literal(associated with numbers) without any fractional or exponential part.
There are three types of integer literals in C programming:

decimal (base 10)
octal (base 8)
hexadecimal (base 16)

For example:

Decimal: 0, -9, 22 etc
Octal: 021, 077, 033 etc
Hexadecimal: 0x7f, 0x2a, 0x521 etc

https://www.programiz.com/cpp-programming/keywords-identifiers

In C++ programming, octal starts with a 0 , and hexadecimal starts with a 0x .

Floating-point Literals
A floating-point literal is a numeric literal that has either a fractional form or an exponent form. For
example:

-2.0

0.0000234

-0.22E-5

Note: E-5 = 10-5

Characters
A character literal is created by enclosing a single character inside single quotation marks. For
example: 'a' , 'm' , 'F' , '2' , '}' etc.

Escape Sequences
Sometimes, it is necessary to use characters that cannot be typed or has special meaning in C++
programming. For example, newline (enter), tab, question mark, etc.

In order to use these characters, escape sequences are used.

Escape Sequences Characters

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\? Question mark

\0 Null Character

String Literals
A string literal is a sequence of characters enclosed in double-quote marks. For example:

"good" string constant

"" null string constant

" " string constant of six white space

"x" string constant having a single character

"Earth is round\n" prints string with a newline

We will learn about strings in detail in the C++ string tutorial.

C++ Constants
In C++, we can create variables whose value cannot be changed. For that, we use the const
 keyword. Here's an example:

Here, we have used the keyword const to declare a constant named LIGHT_SPEED . If we try to
change the value of LIGHT_SPEED , we will get an error.

const int LIGHT_SPEED = 299792458;
LIGHT_SPEED = 2500 // Error! LIGHT_SPEED is a constant.

A constant can also be created using the #define preprocessor directive. We will learn about it in
detail in the C++ Macros tutorial.

Revision #4
Created 3 May 2022 02:05:46 by Chester Whitwell
Updated 3 May 2022 02:11:04 by Chester Whitwell

